Thermal Ecology of Anolis cristatellus

The recent literature has been full of doom and gloom regarding the prospects for lizard survival in the face of global climate change (e.g., Sinervo et al. 2010).  A talk by Alex Gunderson from Manuel Leal’s lab at Duke University provided some important new insights on how our favorite lizards are likely to weather this storm.  Gunderson investigated thermal ecology of Anolis cristatellus at nine localities, including four mesic and five xeric locales.  His data included thousands of field collected temperature records from live animals and copper models as well as data on preferred body temperature and sprint speed performance across a range of temperatures.  Temperature data from live animals and co-distributed copper models showed that the xeric, but not the mesic, populations are behavioral thermoregulators that tend to be found in cooler spots than the randomly placed copper models.  Even with the benefit of behavioral thermoregulation, the xeric forest lizards were consistently active at temperatures that exceeded their preferred body temperature.  When Gunderson integrated these findings with data on sprint speed performance and climate change, he found that the xeric forest animals are likely to suffer significant reductions in performance associated with climate change.  Gunderson ended with a teaser by showing that he has accumulated comparable data on performance across a range of temperatures for all the other Puerto Rican anoles.  Next year’s talk should be a blockbuster!

About Rich Glor

Assistant Professor of Biology at the University of Rochester and longtime anole enthusiast.
This entry was posted in New Research and tagged , , . Bookmark the permalink.

1 Response to Thermal Ecology of Anolis cristatellus

  1. mleal says:

    Rich thanks for the nice post. I would like to add that there is plenty more to come.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s